Further pathogenicity testing of Verticillium nonalfalfae, a biocontrol agent against the invasive Tree of Heaven (Ailanthus altissima), on non-target tree species in Europe

Author:

Lechner Yvonne,Maschek OliverORCID,Kirisits ThomasORCID,Halmschlager ErhardORCID

Abstract

Abstract Verticillium nonalfalfae is an effective biological control agent against the highly invasive Tree of Heaven (Ailanthus altissima) in Europe, and previous research on ten economically and ecologically important tree species occurring in Austria have so far not revealed undesired non-target effects. In this study, another nine tree species including five native, two non-native as well as two invasive alien tree species were tested for susceptibility to the particular strain of Vnonalfalfae (Vert56) used for biological control of A. altissima. Stem inoculations on potted seedlings revealed that this strain of Vnonalfalfae is generally host-adapted to A. altissima. It induced chlorosis, necrosis and wilting already within two weeks post inoculation on A. altissima and resulted in almost completely defoliated or dead seedlings at the end of the vegetation period. Apart from two species (Quercus rubra and Sorbus aucuparia), that suffered from other abiotic/biotic agents, no mortality was observed on all other tree species tested; however, symptoms caused by other abiotic factors were also found on Prunus avium and Ulmus glabra. All tested tree species exhibited vascular discolorations and the fungus could be re-isolated at varying frequencies (6—100%) from inoculated seedlings of all non-target tree species, although five of these species exhibited no external symptoms. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae, whereas Acer platanoides, Castanea sativa, Q. rubra, S. aucuparia and U. glabra were considered as tolerant (T), and A. negundo, P. avium, P. serotina and Q. petraea were rated as possible resistant (PR) due to the low rates of re-isolation.

Funder

Austrian Federal Forests

Austrian Federal Railways

Austrian Power Grid AG

provincial government of Styria

Forest Office and Urban Agriculture

via donau

Forest Enterprise Esterházy

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3