Abstract
Abstract
Verticillium nonalfalfae is an effective biological control agent against the highly invasive Tree of Heaven (Ailanthus altissima) in Europe, and previous research on ten economically and ecologically important tree species occurring in Austria have so far not revealed undesired non-target effects. In this study, another nine tree species including five native, two non-native as well as two invasive alien tree species were tested for susceptibility to the particular strain of V. nonalfalfae (Vert56) used for biological control of A. altissima. Stem inoculations on potted seedlings revealed that this strain of V. nonalfalfae is generally host-adapted to A. altissima. It induced chlorosis, necrosis and wilting already within two weeks post inoculation on A. altissima and resulted in almost completely defoliated or dead seedlings at the end of the vegetation period. Apart from two species (Quercus rubra and Sorbus aucuparia), that suffered from other abiotic/biotic agents, no mortality was observed on all other tree species tested; however, symptoms caused by other abiotic factors were also found on Prunus avium and Ulmus glabra. All tested tree species exhibited vascular discolorations and the fungus could be re-isolated at varying frequencies (6—100%) from inoculated seedlings of all non-target tree species, although five of these species exhibited no external symptoms. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae, whereas Acer platanoides, Castanea sativa, Q. rubra, S. aucuparia and U. glabra were considered as tolerant (T), and A. negundo, P. avium, P. serotina and Q. petraea were rated as possible resistant (PR) due to the low rates of re-isolation.
Funder
Austrian Federal Forests
Austrian Federal Railways
Austrian Power Grid AG
provincial government of Styria
Forest Office and Urban Agriculture
via donau
Forest Enterprise Esterházy
University of Natural Resources and Life Sciences Vienna
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Plant Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献