Abstract
AbstractThis paper elaborates an energy and material flow model for conventional lightweight packaging sorting and recycling in Germany based on literature analysis and information provided by industry experts. The model is used to determine specific energy and material demands of particular lightweight packaging fractions and their respective climate impacts. Fluorescent-based identification techniques, tracer-based-sorting in particular, are assessed as an option to increase material circularity due to improved sorting and recycling accuracy. In comparison to primary production of lightweight packaging, conventional sorting and recycling saves 565 kg CO2-eq./Mg of input sorting. A total of four implementation scenarios are considered, reflecting the percentage of mixed plastics and residuals that can be mechanically processed through improved sorting (10%, 50%, 90% and 100%). Using tracer-based-sorting, these savings increase from 578 up to 1227 kg CO2-eq/Mg depending on implementation scenario. This paper concludes that tracer-based-sorting can contribute to an environmentally benign circular economy by yielding high-quality regranulates, which are capable of substituting more carbon-intensive primary production of lightweight packaging.
Funder
Bundesministerium für Bildung und Forschung
Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health
Reference77 articles.
1. Arenas-Vivo A, Beltrán FR, Alcázar V, de la Orden MU, Urreaga J (2017) Fluorescence labeling of high density polyethylene for identification and separation of selected containers in plastics waste streams. Comparison of thermal and photochemical stability of different fluorescent tracers. Materials Today Communications 12:125–132. https://doi.org/10.1016/j.mtcomm.2017.07.008
2. Arvidsson R, Tillmann A, Sandén B, Janssen M, Nordelöf A, Kushnir D, Molander S (2018) Environmental assessment of emerging technologies: recommendations for prospective LCA. J Ind Ecol 22:1286–1294. https://doi.org/10.1111/jiec.12690
3. Birnstengel B; Eckhardt M, Häusler A, Hoffmeister J, Labinsky A, Lambert J, Lühr O, Schütz N, Simpson R (2018) Statusbericht der deutschen Kreislaufwirtschaft 2018. Einblicke und Aussichten. [Status Report of the German Circular Economy 2018. Insights and Perspectives.]. Düsseldorf, https://www.bvse.de/images/pdf/Nachrichten_2018/Statusbericht_2018_Ansicht_und_Druck.pdf. Assessed 15 October 2020
4. Brunner S, Fomin P, Kargel C (2015) Automated sorting of polymer flakes fluorescence labeling and development of a measurement system prototype. Waste management New York 38:49–60. https://doi.org/10.1016/j.wasman.2014.12.006
5. Bünemann A, Rachut G, Christiani J, Langen M, Wolters J (2011) Planspiel zur Fortentwicklung der Verpackungsverordnung Teilvorhaben 1: Bestimmung der Idealzusammensetzung der Wertstofftonne. [Planning simulation for the further development of the packaging regulation sub-project 1: determining the ideal composition of the recyclables bin.]. Federal Environment Agency. Dessau-Roßlau, https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4074.pdf. Assessed 22 October 2020
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献