Author:
Hoefler Torsten,Lumsdaine Andrew,Dongarra Jack
Publisher
Springer Berlin Heidelberg
Reference21 articles.
1. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 107–113 (2008)
2. Lämmel, R.: Google’s MapReduce programming model – Revisited. Sci. Comput. Program. 68, 208–237 (2007)
3. de Kruijf, M., Sankaralingam, K.: MapReduce for the CELL B.E. Architecture. IBM Journal of Research and Development 52 (2007)
4. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce framework on graphics processors. In: PACT 2008: Proceedings of the 17th international conference on Parallel architectures and compilation techniques, pp. 260–269. ACM, New York (2008)
5. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating MapReduce for Multi-core andMultiprocessor Systems. In: HPCA 2007: Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, Washington, DC, USA, pp. 13–24. IEEE Computer Society, Los Alamitos (2007)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CAPIO: a Middleware for Transparent I/O Streaming in Data- Intensive Workflows;2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC);2023-12-18
2. HEAR: Homomorphically Encrypted Allreduce;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11
3. FMI: Fast and Cheap Message Passing for Serverless Functions;Proceedings of the 37th International Conference on Supercomputing;2023-06-21
4. Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture;Electronics;2022-12-23
5. Implicit Actions and Non-blocking Failure Recovery with MPI;2022 IEEE/ACM 12th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS);2022-11