1. A. T. Clayman, K. M. Lawrence, G. L. Mullen, H. Niederreiter, and N. J. A. Sloane. Updated tables of parameters of (£, ra, s)-nets. To appear in: J. Comb. Designs, 1999.
2. T. Hansen, G. L. Mullen, and H. Niederreiter. Good parameters for a class of node sets in quasi-Monte Carlo integration.Math. Comp.,61: 225–234, 1993.
3. G. Larcher, A. Lauß, H. Niederreiter, and W. Ch. Schmid. Optimal polynomials for (t, ra, s)-nets and numerical integration of multivariate Walsh series.SIAM J. Numer. Analysis,33: 2239–2253, 1996.
4. G. Larcher, H. Niederreiter, and W. Ch. Schmid. Digital nets and sequences constructed over finite rings and their application to quasi- Monte Carlo integration.Monatsh. Math.,121: 231–253, 1996.
5. G. Larcher, W. Ch. Schmid, and R. Wolf. Digital (t, ra, s)-nets, digital (T, s)-sequences, and numerical integration of multivariate Walsh series. In P. Hellekalek, G. Larcher, and P. Zinterhof, editors,Proceedings of the 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods, Salzburg, Nov. 18, 1994, volume 95–4 of Technical Report Series, pages 75–107. ACPC-Austrian Center for Parallel Computation, 1995.