Optimization of Sparse Matrix-Vector Multiplication for CRS Format on NVIDIA Kepler Architecture GPUs

Author:

Mukunoki Daichi,Takahashi Daisuke

Publisher

Springer Berlin Heidelberg

Reference14 articles.

1. Baskaran, M.M., Bordawekar, R.: Optimizing Sparse Matrix-Vector Multiplication on GPUs. IBM Research Report RC24704 (2009)

2. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA. NVIDIA Technical Report NVR-2008-004 (2008)

3. NVIDIA Corporation: Whitepaper NVIDIAs Next Generation CUDA Compute Architecture: Kepler GK110. itepaper.pdf (2012), http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Wh

4. Davis, J.D., Chung, E.S.: SpMV: A Memory-Bound Application on the GPU Stuck Between a Rock and a Hard Place. Microsoft Technical Report MSR–TR–2012–95 (2012)

5. Davis, T., Hu, Y.: The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Techniques for GPU Programming;ACM Computing Surveys;2023-03-16

2. VCSR: An Efficient GPU Memory-Aware Sparse Format;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

3. Sparse Matrix-Vector Multiplication on GPGPUs;ACM Transactions on Mathematical Software;2017-03-23

4. Introduction;Invasive Tightly Coupled Processor Arrays;2016

5. Parallel preconditioned conjugate gradient method for large sparse and highly ill-conditioned systems arising in computational geomechanics;International Journal of Computational Science and Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3