1. Bock, H.-H. (2001). “Clustering Algorithms and Kohonen Maps for Symbolic Data,” in ICNCB Proceedings, Springer: Heidelberg, pp. 203–215.
2. Bock, H.-H., and Diday, E. (2000). Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, Studies in Classification, Data Analysis, and Knowledge Organisation, Springer-Ver lag, Heidelberg.
3. Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., and Ralambondrainy, H. (1989). Classification Automatique des Données. Dunod, Paris.
4. Chavent, M., and Lechevallier, Y. (2002). “Dynamical Clustering of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance,” in Classification, Clustering, and Data Analysis, eds. K. Jajuga, A. Sokolowski, and H.-H. Bock, Berlin: Springer-Verlag, pp. 53–60.
5. Diday, E. (1988). “The Symbolic Approach in Clustering and Related Methods of Data Analysis: The Basic Choices,” in Classification and Related Methods of Data Analysis, ed. H.-H. Bock, Amsterdam: North Holland, pp. 673–684