Publisher
Springer Berlin Heidelberg
Reference9 articles.
1. Giles, C.L., Maxwell, T.: Learning, invariance and generalization is high order neural networks. Applied Optics 26, 4972–4978 (1987)
2. Cherkassky, V., et al.: Linear algebra approach to neural AM and noise performance of neural classifiers. IEEE Trans. Computer 40, 1429–1434 (1991)
3. Oja, E., Karhunen, J.: On stochastic approximation of the eigenvectors and eigen values of the expectation of a random matrix. Journal Math. Analysis and Appls. 106, 69–84 (1985)
4. Sanger, T.D.: Optimal unsupervised learning in a single layer linear feed forward neural network. Neural Networks 2, 459–473 (1989)
5. Kung, S.Y.: Adaptive principal component analysis via an orthogonal learning network. In: Proc. IEEE ISCAS, New Orleans (May 1990)