1. S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. HUGIN — A shell for building Bayesian belief universes for expert systems. Proc. 11th Int. J. Conf. on Artificial Intelligence, 1080–1085, 1989
2. C. Borgelt and R. Kruse. Evaluation Measures for Learning Probabilistic and Possibilistic Networks. Proc. 6rh IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE’97), Vol. 2, 669–676, Barcelona, Spain, 1997.
3. C.K. Chow and C.N. Liu. Approximating Discrete Probability Distributions with Dependence Trees. IEEE Trans. on Information Theory 14(3):462–467, IEEE 1968
4. G.F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9:309–347, Kluwer 1992
5. C.J. Date. An Introduction to Database Systems, Vol. 1. Addison Wesley, Reading, MA, 1986