1. Ghanem, A.S., Venkatesh, S., West, G.: Multi-class Pattern Classification in Imbalanced Data. In: ICPR, pp. 2881–2884 (2010)
2. Day, R., Beck, D.A.C., Armen, R.S., Daggett, V.: A consensus view of fold space: Combining SCOP, CATH, and the Dali domain dictionary. Protein Science 12, 2150–2160 (2003)
3. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study. Intelligent Data Analysis Journal 6(5), 429–450 (2002)
4. Elkan, C.: Boosting and naive bayesian learning. Technical Report CS97-557, Department of Computer Science and Engneering, University of California,Sam Diego, CA (September 1997)
5. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, The Mit Press (1996)