Author:
Silva Catarina,Ribeiro Bernardete
Publisher
Springer Berlin Heidelberg
Reference22 articles.
1. Merz, C.J., Murphy, P.M.: UCI repository of machine learning data bases, Irvine, CA (1998), http://www.ics.uci.edu/mlearn/MLRepository.html
2. Wrensch, M., Georgianna Farren, T.C., Flavia Belli, J.B., Clarke, C., Erdmann, C.A., Lee, M., Moghadassi, M., Peskin-Mentzer, R., Quesenberry, C.P., Souders-Mason, V., Spence, L., Suzuki, M., Gould, M.: Risk factors for breast cancer in a population with high incidence rates. Breast Cancer Res. 5, 88–102 (2003)
3. Mangasarian, O., Street, W., Wolberg, W.: Breast cancer diagnosis and prognosis via linear programming. Operations Research 43(4), 570–577 (1995)
4. Fogel, D.B., Wasson, E.C., Boughon, E.M., Porto, V.W., Angeline, P.J.: Linear andneural models for classifying breast masses. IEEE Transactions on Medical Imaging 17(3), 485–488 (1998)
5. Xing, K., Chen, D., Henson, D., Sheng, L.: A clustering-based approach to predict outcome in cancer patients. In: ICMLA, pp. 541–546 (2007)