Author:
Baumann Florian,Ehlers Arne,Vogt Karsten,Rosenhahn Bodo
Publisher
Springer Berlin Heidelberg
Reference25 articles.
1. Breiman, L.: Random forests. In: Machine Learning, vol. 45, pp. 5–32 (2001)
2. Breiman, L.: Bagging predictors. In: Machine Learning, vol. 24, pp. 123–140 (1996)
3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148–156. IEEE (1996)
4. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data. Technical report, Department of Statistics, University of Berkeley (2004)
5. Khoshgoftaar, T.M., Golawala, M., Hulse, J.V.: An empirical study of learning from imbalanced data using random forest. In: 19th International Conference on Tools with Artificial Intelligence (ICTAI), vol. 2, pp. 310–317. IEEE (2007)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of Random Forest Hyperparameters with Genetic Algorithm in Classification of Lung Cancer;2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI);2023-12-11
2. Data Pre-Processing Using SMOTE Technique for Gender Classification with Imbalance Hu’s Moments Features;Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2;2018