Author:
Coleman Thomas F.,Xiong Xin,Xu Wei
Publisher
Springer Berlin Heidelberg
Reference17 articles.
1. Bischof, C.H., Bouaricha, A., Khademi, P., Moré, J.J.: Computing gradients in large-scale optimization using automatic differentiation. INFORMS J. Computing 9, 185–194 (1997)
2. Bischof, C.H., Haghighat, M.R.: Hierarchical approaches to automatic differentiation. In: M. Berz, C. Bischof, G. Corliss, A. Griewank (eds.) Computational Differentiation: Techniques, Applications, and Tools, pp. 83–94. SIAM, Philadelphia, PA (1996)
3. Bischof, C.H., Khademi, P.M., Bouaricha, A., Carle, A.: Efficient computation of gradients and Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optimization Methods and Software 7, 1–39 (1997)
4. Bücker, H.M., Rasch, A.: Modeling the performance of interface contraction. ACM Transactions on Mathematical Software 29(4), 440–457 (2003). DOI http://doi.acm.org/10.1145/962437.962442
5. Cayuga Research Associates, L.: ADMAT-2.0 Users Guide (2009). URL http://www.cayugaresearch.com/