Feature Selection by Transfer Learning with Linear Regularized Models
Author:
Helleputte Thibault,Dupont Pierre
Publisher
Springer Berlin Heidelberg
Reference31 articles.
1. Ein-Dor, L., Zuk, O., Domany, E.: Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. PNAS 103(15), 5923–5928 (2006) 2. Edgar, R., Barrett, T.: Ncbi geo standards and services for microarray data. Nature Biotechnology 24, 1471–1472 (2006) 3. Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., Holloway, E., Lukk, M., Malone, J., Mani, R., Pilicheva, E., Rayner, T.F., Rezwan, F., Sharma, A., Williams, E., Bradley, X.Z., Adamusiak, T., Brandizi, M., Burdett, T., Coulson, R., Krestyaninova, M., Kurnosov, P., Maguire, E., Neogi, S.G., Rocca-Serra, P., Sansone, S.-A., Sklyar, N., Zhao, M., Sarkans, U., Brazma, A.: ArrayExpress update–from an archive of functional genomics experiments to the atlas of gene expression. Nucl. Acids Res. 37(suppl-1), D868–D872 (2009) 4. Silver, D.L., Bennett, K.P.: Guest editor’s introduction: special issue on inductive transfer learning. Machine Learning 73, 215–220 (2008) 5. Pan, S.J., Yang, Q.: A survey on transfer learning. Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China (November 2008)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MTFuzz: fuzzing with a multi-task neural network;Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2020-11-07 2. Benchmarking Gene Selection Techniques for Prediction of Distinct Carcinoma from Gene Expression Data: A Computational Study;Nature Inspired Computing for Data Science;2019-11-27 3. Feature Selection via Transferring Knowledge Across Different Classes;ACM Transactions on Knowledge Discovery from Data;2019-06-04 4. Comparison Between Filter Criteria for Feature Selection in Regression;Lecture Notes in Computer Science;2019 5. Semi Supervised Relevance Learning for Feature Selection on High Dimensional Data;2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA);2017-10
|
|