Author:
Wetzler Nathan,Heule Marijn J. H.,Hunt Warren A.
Publisher
Springer Berlin Heidelberg
Reference33 articles.
1. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equivalence checking. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 114–121. IEEE (2001)
2. Lescuyer, S., Conchon, S.: A reflexive formalization of a SAT solver in Coq. In: International Conference on Theorem Proving in Higher Order Logics, TPHOLs (2008)
3. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM (JACM) 7(3), 201–215 (1960)
4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)
5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories;Lecture Notes in Computer Science;2024
2. Lazily-Verifiable SAT Proof Checker in SPARK 2014;Datenschutz und Datensicherheit - DuD;2023-07-25
3. A Flexible Proof Format for SAT Solver-Elaborator Communication;Logical Methods in Computer Science;2022-04-18
4. Chapter 15. Proofs of Unsatisfiability;Frontiers in Artificial Intelligence and Applications;2021-02-02
5. Chapter 4. Conflict-Driven Clause Learning SAT Solvers;Frontiers in Artificial Intelligence and Applications;2021-02-02