1. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In: ICML 2000: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 57–64. Morgan Kaufmann Publishers Inc., San Francisco (2000)
2. Crisp, D.J., Burges, C.J.C.: A geometric interpretation of ν-SVM classifiers. In: Solla, S.A., Leen, T.K., Müller, K.R. (eds.) Advances in Neural Information Processing Systems 12, Papers from Neural Information Processing Systems (NIPS), Denver, CO, USA, pp. 244–251. MIT Press, Cambridge (1999)
3. Lecture Notes in Computer Science;M. Bern,2001
4. Mavroforakis, M.E., Sdralis, M., Theodoridis, S.: A novel SVM geometric algorithm based on reduced convex hulls. In: 18th International Conference on Pattern Recognition, vol. 2, pp. 564–568 (2006)
5. Mavroforakis, M.E., Theodoridis, S.: A geometric approach to Support Vector Machine (SVM) classification. IEEE Transactions on Neural Networks 17(3), 671–682 (2006)