Application of Empirical Mode Decomposition and Fuzzy Entropy to High-Speed Rail Fault Diagnosis
Author:
Publisher
Springer Berlin Heidelberg
Link
http://link.springer.com/content/pdf/10.1007/978-3-642-54924-3_9
Reference16 articles.
1. Banerjee TP, Das S, Roychoudhury J, Abraham A (2010) Implementation of a new hybrid methodology for fault signal classification using short-time fourier transform and support vector machines. Soft computing models in industrial and environmental applications. doi: 10.1007/978-3-642-13161-5_28
2. Rosero J, Romeral JAO, Romeral L, Rosero E (2008) Short circuit fault detection in PMSM by means of empirical mode decomposition (EMD) and wigner ville distribution (WVD). Applied power electronics conference and exposition. doi: 10.1109/APEC.2008.4522706
3. Saravanan N, Ramachandran KI (2010) Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN). Expert Syst Appl 37(6):4168–4181
4. Ai S, Li H (2008) Gear fault detection based on ensemble empirical mode decomposition and Hilbert-Huang transform. Fuzzy systems and knowledge discovery. doi: 10.1109/FSKD.2008.64
5. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R S A: Math Phys Eng Sci 454(1971):903–995
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The multi-channel signals based tensor sparse representation classification method for fault diagnosis of high-speed train;Structural Health Monitoring;2024-02-12
2. Tram gearbox condition monitoring method based on trackside acoustic measurement;Measurement;2023-02
3. High-Accuracy and Adaptive Fault Diagnosis of High-Speed Train Bogie Using Dense-Squeeze Network;IEEE Transactions on Vehicular Technology;2022-03
4. Fault diagnosis of rolling bearing using marine predators algorithm-based support vector machine and topology learning and out-of-sample embedding;Measurement;2021-05
5. Pattern Recognition of Optical Fiber Vibration Signal of the Submarine Cable for Its Safety;IEEE Sensors Journal;2021-03-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3