Looking for “Good” Recommendations: A Comparative Evaluation of Recommender Systems
Author:
Publisher
Springer Berlin Heidelberg
Link
http://link.springer.com/content/pdf/10.1007/978-3-642-23765-2_11.pdf
Reference25 articles.
1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering 17(6), 734–749 (2005)
2. Bennett, J., Lanning, S.: The Netix Prize. In: Proceedings of KDD Cup and Workshop, pp. 3–6 (2007)
3. Celma, Ò., Herrera, P.: A new approach to evaluating novel recommendations. In: RecSys 2008: Proc. of the 2008 ACM Conf. on Recommender Systems, pp. 179–186. ACM, New York (2008)
4. Chen, L., Pu, P.: A cross-cultural user evaluation of product recommender interfaces. In: Proc. of the 2008 ACM Conf. on Recommender Systems, RecSys 2008, pp. 75–82. ACM, New York (2008)
5. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-N recommendation tasks. In: RecSys 2010: Proc. of the Fourth ACM Conf. on Recommender Systems, pp. 39–46. ACM, Barcelona (2010)
Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Understanding user intent modeling for conversational recommender systems: a systematic literature review;User Modeling and User-Adapted Interaction;2024-06-06
2. Content Based Movie Recommendation System Using Machine Learning Algorithm;2023 International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT);2023-11-23
3. CRS-Que : A User-Centric Evaluation Framework for Conversational Recommender Systems;ACM Transactions on Recommender Systems;2023-11-02
4. An anatomization of research paper recommender system: Overview, approaches and challenges;Engineering Applications of Artificial Intelligence;2023-02
5. Hybrid Recommendation Algorithm Combining Project Importance and Prediction Score;2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA);2023-01-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3