Optimal image feature set for detecting lung nodules on chest X-ray images
Author:
Publisher
Springer Berlin Heidelberg
Link
http://link.springer.com/content/pdf/10.1007/978-3-642-56168-9_118
Reference13 articles.
1. H. Suzuki, N. Inaoka, H. Takabatake, M. Mori, H. Natori and A. Suzuki, “An experiment system for detecting lung nodules by chest x-ray image processing,” SPIE. Biomedical Image Processing II, Vol.. 1450, pp. 99–107, 1991.
2. J. Lin, S. B. Lo, A. Hasegawa, M. T. Freedman and S. K. Mun, “Reduction of false positives in lung nodule detection using a two-level neural classification,” IEEE Trans. On Med. Imag., Vol.. 15, pp. 206–217, 1996.
3. Xin-Wei. Xu, K. Doi, T. Kobayashi, H. MacMahon and M. L. Giger,“Development of an improved CAD scheme for automated detection of lung nodules in digital chest images,” Med. Phys., Vol..24, No. 9, pp. 1395–1403, 1997.
4. H. Yoshida and K. Doi,“Computerized detection of pulmonary nodules in chest radiographs: reduction of false positives based on symmetry between left and right lungs,” Proc. SPIE in Medical Imaging 2000, pp. 97–102, 2000.
5. Y.Wu, M.L.Giger, K.Doi, C.J.Vyboorny, R.A.Schmidt, C.E.Metz,“Artificial Neural Networks in Mammography: Application to Decision Making in the Diagnosis of Breast Cancer,” Radiology, Vol..l87,pp.81–87, 1993.
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A systematic approach to deep learning-based nodule detection in chest radiographs;Scientific Reports;2023-06-21
2. Generation of Novel Synthetic Portable Chest X-Ray Images for Automatic COVID-19 Screening;AI Applications for Disease Diagnosis and Treatment;2022-06-10
3. Utilizing Synthetic Nodules for Improving Nodule Detection in Chest Radiographs;Journal of Digital Imaging;2022-03-18
4. Computerized Detection of Lesions in Diagnostic Images with Early Deep Learning Models;Machine and Deep Learning in Oncology, Medical Physics and Radiology;2022
5. Deep learning applied to automatic disease detection using chest X‐rays;Journal of Medical Imaging and Radiation Oncology;2021-07-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3