Publisher
Springer Berlin Heidelberg
Reference24 articles.
1. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)
2. Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A.L., French, J.C.: Clustering large datasets in arbitrary metric spaces. In: Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, pp. 502–511 (1999)
3. Koutsourelakis, P., Eliassi-Rad, T.: Finding mixed-memberships in social networks. In: Papers from the 2008 AAAI Spring Symposium on Social Information Processing, Technical Report WW-08-06, pp. 48–53. AAAI Press, Menlo Park (2008)
4. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36 (2007)
5. Ruan, J., Zhang, W.: Identifying network communities with a high resolution. PhysRevE (2007)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detecting community structure using biased random merging;Physica A: Statistical Mechanics and its Applications;2012-02
2. Context-sensitive detection of local community structure;Social Network Analysis and Mining;2011-07-19