Label-Dependent Feature Extraction in Social Networks for Node Classification

Author:

Kajdanowicz Tomasz,Kazienko Przemysław,Doskocz Piotr

Publisher

Springer Berlin Heidelberg

Reference18 articles.

1. Lecture Notes in Computer Science;C. Desrosiers,2009

2. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Proceedings of the International Joint Conference on Artificial Intelligence IJCAI 1999, pp. 1300–1309 (1999)

3. Fruchterman, T., Reingold, E.: Graph Drawing by Force-directed Placement. Software - Practice and Experience 21, 1129–1164 (1991)

4. Gallagher, B., Eliassi-Rad, T.: Leveraging Label-Independent Features for Classification in Sparsely Labeled Networks: An Empirical Study. In: Proceedings of the Second ACM SIGKDD Workshop on Social Network Mining and Analysis (SNA-KDD 2008), Las Vegas, NV (2008)

5. Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges for classification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 256–264 (2008)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Feature Extraction Technique for ECG Arrhythmia Classification Using ML;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

2. Hybridizing graph‐based Gaussian mixture model with machine learning for classification of fraudulent transactions;Computational Intelligence;2022-11-26

3. Feature Selection Algorithms and Student Academic Performance: A Study;Advances in Intelligent Systems and Computing;2020-08-02

4. Discriminant Feature Extraction using Disease Segmentation for Automatic Leaf Disease Diagnosis;Proceedings of the International Conference on Computing Advancements;2020-01-10

5. SIGMM: A Novel Machine Learning Algorithm for Spammer Identification in Industrial Mobile Cloud Computing;IEEE Transactions on Industrial Informatics;2019-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3