1. J. Dahmen, D. Keysers, M. Güld, H. Ney, “Invariant Image Object Recognition using Gaussian Mixture Densities”, Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, September 2000, in press.
2. J. Dahmen, K. Beulen, M. Güld, H. Ney, “A Mixture Density Based Approach to Object Recognition for Image Retrieval”, Proceedings of the 6th International RIAO Conference on Content-Based Multimedia Information Access, Paris, France, April 2000, in press.
3. J. Dahmen, R. Schlüter, H. Ney, “Discriminative Training of Gaussian Mixtures for Image Object Recognition”, In W. Förstner, J. Buhmann, A. Faber, P. Faber (eds.): Proceedings of the 21. Symposium of the German Association for Pattern Recognition (DAGM), Bonn, Germany, pp. 205-212, September 1999.
4. A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, 39(B), pp. 1–38, 1977.
5. L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, New York, 1996.