1. E.Y. Chang, K. Zhu , H. Wang, H. Bai, J. Li, Z. Qiu, H. Cui, Parallelizing support vector machines on distributed computers, in Proceedings of NIPS, 2007
2. E.Y. Chang, H. Bai, K. Zhu, H. Wang, J. Li, Z. Qiu, Google PSVM open source.
http://code.google.com/p/psvm/
3. V. Vapnik, The Nature of Statistical Learning Theory. (Springer, New York, 1995)
4. S. Mehrotra, On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)
5. T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods—Support Vector Learning, ed. by B. Schölkopf, C. Burges, A. Smola (MIT Press, 1999)