Publisher
Springer Berlin Heidelberg
Reference16 articles.
1. Tenenbaum, J.B., de Sliva, V., Lagford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(22), 2319–2323 (2000)
2. Huo, X., Ni, X.S., Smith, A.K.: A survey of manifold-based learning methods. In: Liao, T.W., Triantaphyllou, E. (eds.) Recent Advances in Data Mining of Enterprise Data. World Scientific, Singapore (2007)
3. Tateyama, T., Kawata, S., Oguchi, T.: A teaching method using a self-organizing map for reinforcement learning. Artificial Life and Robotics 7(4), 193–197 (2006)
4. Handa, H., Ninomiya, A., Horiuchi, T., Konishi, T., Baba, M.: Adaptive State Construction for Reinforcement Learning and its Application to Robot Navigation Problems. In: Proc. 2001 IEEE Sys. Man and Cybernetics Conf., pp. 1436–1441 (2001)
5. Hiroyasu, T., Miki, M., Sano, M., Shimosaka, H., Tsutsui, S., Dongarra, J.: Distributed Probabilistic Model-Building Genetic Algorithm. In: Proc. 2003 Genetic and Evol. Comp. Conf., pp. 1015–1028 (2003)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献