Pentoxifylline changes the balance of immune cell population in breast tumor-infiltrating lymphocytes

Author:

Kazemi Mohammad Hossein,Shokrollahi Barough Mahdieh,Momeni-Varposhti Zahra,Ghanavatinejad Alireza,Zarehzadeh Mehrabadi Ali,Sadeghi BehnamORCID,Falak Reza

Abstract

AbstractImmunotherapy utilizing tumor-infiltrating lymphocytes (TILs) is a promising approach for cancer treatment. Pentoxifylline (PTXF), a xanthine derivative, exhibits antitumor properties. This study aimed to investigate the impact of PTXF on the phenotype and function of TILs and splenocytes in a triple-negative breast cancer (TNBC) mouse model. TNBC was subcutaneously induced in BALB/c mice, followed by nine intraperitoneal injections of 100 mg/kg PTXF. TILs were then isolated by enzymatic digestion of tumors and cocultured with 4T1 cells. The proportion of regulatory T cells (Tregs) and cytotoxic T cells in TILs and splenocytes was assessed using flow cytometry. Transforming growth factor (TGF)-β and interferon (IFN)-γ production in TILs and splenocytes cultures was measured by ELISA. Relative expression of t-bet, foxp3, gata-3, and ror-γt in TILs and splenocytes was evaluated using real-time PCR. Tumor growth in PTXF-treated mice was significantly lower than that in the controls (P < 0.01). The frequency of regulatory and cytotoxic TILs in PTXF-treated mice was approximately half (P < 0.01) and twice (P < 0.05) that of the control group, respectively. The level of TGF-β and IFN-γ in the supernatant of PTXF-treated TILs was decreased and increased, respectively (P < 0.05). The relative expression of t-bet and foxp3 in the PTXF-treated mice compared to controls was increased and decreased, respectively (P < 0.05). Changes in the immune cell balance were less significant in the spleen compared to the TILs. PTXF treatment could limit the tumor growth and modify the regulatory-to-cytotoxic TILs ratio, as well as cytokine balance of TILs, in favor of antitumor responses.

Funder

Iran University of Medical Sciences

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Hematology,General Medicine

Reference40 articles.

1. WHO: Estimated number of new cases in 2020, worldwide, both sexes, all ages 2020 [Available from: https://gco.iarc.fr/today/online-analysis-table?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1.

2. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

3. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84: 106535.

4. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4(1):1–7.

5. Disis ML, Stanton SE. Triple-negative breast cancer: immune modulation as the new treatment paradigm. Am Soc Clin Oncol Educ Book. 2015;35(1):e25–30.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3