Non-smooth integrability theory

Author:

Hosoya YuhkiORCID

Abstract

AbstractWe study a method for calculating the utility function from a candidate of a demand function that is not differentiable, but is locally Lipschitz. Using this method, we obtain two new necessary and sufficient conditions for a candidate of a demand function to be a demand function. The first concerns the Slutsky matrix, and the second is the existence of a concave solution to a partial differential equation. Moreover, we show that the upper semi-continuous weak order that corresponds to the demand function is unique, and that this weak order is represented by our calculated utility function. We provide applications of these results to econometric theory. First, we show that, under several requirements, if a sequence of demand functions converges to some function with respect to the metric of compact convergence, then the limit is also a demand function. Second, the space of demand functions that have uniform Lipschitz constants on any compact set is compact under the above metric. Third, the mapping from a demand function to the calculated utility function becomes continuous. We also show a similar result on the topology of pointwise convergence.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Allen, R., Dziewulski, P., Rehbeck, J.: Revealed statistical consumer theory. Econ. Theory (2023). https://doi.org/10.1007/s00199-023-01513-0

2. Antonelli, G.B.: Sulla Teoria Matematica dell’ Economia Politica. Tipografia del Folchetto, Pisa (1886). Translated by Chipman, J. S., Kirman, A. P. 1971. On the mathematical theory of political economy. In: Chipman, J.S., Hurwicz, L., Richter, M.K., Sonnenschein, H.F. (eds.) Preferences, Utility and Demand, pp. 333–364. Harcourt Brace Jovanovich, New York (1971)

3. Blundell, R., Horowitz, J., Parey, M.: Nonparametric estimation of a nonseparable demand function under the Slutsky inequality restriction. Rev. Econ. Stat. 99, 291–304 (2017)

4. Deaton, A.: Demand analysis. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, vol. 3, pp. 1767–1839. Elsevier, Amsterdam (1986)

5. Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes, pp. 159–165. Wiley, New York (1954)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3