The ROSA knee robotic system demonstrates superior precision in restoring joint line height and posterior condylar offset compared to conventional manual TKA: a retrospective case–control study

Author:

Gamie Zakareya,Paparoidamis George,Milonakis Nikos,Kenanidis EustathiosORCID,Tsiridis EleftheriosORCID

Abstract

Abstract Purpose Variations in total knee arthroplasty (TKA) joint line height may lead to complications such as pain and altered joint mechanics, while posterior condylar offset (PCO) can influence knee stability. Methods Single-centre, single-surgeon retrospective analysis from December 2019 to May 2023 investigated primary unilateral TKA (Nexgen Legacy, Zimmer Biomet) in patients with knee osteoarthritis, using ROSA robotic system (raTKA) or conventional manual technique (mTKA). Joint line height and PCO were measured and compared in 182 raTKA and 144 mTKA patients. Results The groups were matched in age (p = 0.847) and sex distribution (p = 0.2). Excellent interobserver agreement (ICC ≥ 0.9). RaTKA mean joint line height difference was − 0.0001 mm (± 3.48, 95% CI − 0.509, 0.509) (p = 0.523), − 0.951 mm for mTKA (± 4.33, 95% CI − 1.664, − 0.237) (p = 0.009). RaTKA mean PCO difference was 0.52 mm (± 2.45, 95% CI 0.160, 0.880) (p = 0.005), 1.15 mm for mTKA (± 4.01, 95% CI – 1.496, 1.818) (p < 0.001). Mean difference in joint line height of 0.95 mm between groups was significant (p = 0.027), and for PCO, it was 0.63 mm, demonstrating tendency towards significance (p = 0.08). Mean absolute value in joint line height difference between groups was not significant (p = 0.235) but highly significant for PCO (p < 0.001). Conclusion The ROSA knee robotic system can more accurately restore joint line height and PCO compared to conventional manual TKA. The improved degree of precision raTKA offers may be a vehicle for better Patient-Reported Outcome Measures, but further correlational studies are required.

Funder

Aristotle University of Thessaloniki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3