Effects of Soil–Structure Interaction on Performance of Bridges During Earthquakes. Case Study: Integral Abutment Bridge in Pennsylvania, USA

Author:

Firoozi Ali AkbarORCID,Naji Maryam,Firoozi Ali Asghar

Abstract

AbstractBridges are among the most important transportation elements that may be damaged by earthquakes. An integral abutment bridge (IAB) is a bridge linking the superstructure directly to the substructure. As soil piles, abutments, and superstructures act as a combined system to resist lateral loading on the bridge, soil stiffness has a major impact on load distribution. This research attempts to determine how the structure and soil parameters affect the IABs. The parametric study consists of four variables, namely bridge span (short, medium, and large spans were 18.3, 35.4, and 64.5 m, respectively), backfill height/pressure (3.1, 4.6, and 6.1 m, respectively), stiffness of soil mixture backfills (high, intermediate, and low), and soil density around the piles (high, intermediate, and low). Because of the small width–length ratio of the bridge, a 2D model of an IAB with soil springs around the piles and abutments was developed with finite element software. Findings show that the value of the backfill pressure affects girder axial forces and girder bending moments at the IAB. Also, the stiffness of soil mixture backfills is an important factor to change lateral displacements, while less movement is related to high stiffness of soil mixture backfills with intermediate clay around the pile. It is clear that the maximum axial girder moments at the superstructure generally decrease when the stiffness of the soil mixture behind the abutments and around piles increases, similar to pile deflection and abutment displacements. In addition to maximum abutment, the head moment decreases when abutment backfill is dense and increases when piles are located in hard clay, similar to pile moments. Lastly, dense sand backfill behind abutments is recommended since it decreases pile deflections, pile lateral forces, abutment displacements, abutment head moments, and particularly pile bending moments.

Funder

University of Botswana

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3