Compressive Strength Estimation of Rice Husk Ash-Blended Concrete Using Deep Neural Network Regression with an Asymmetric Loss Function
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s40996-022-01015-4.pdf
Reference78 articles.
1. Aggarwal CC (2018) Neural networks and deep learning. Springer, New York
2. Amin MN, Iqtidar A, Khan K, Javed MF, Shalabi FI, Qadir MG (2021) Comparison of machine learning approaches with traditional methods for predicting the compressive strength of rice husk ash concrete. Crystals 11:779. https://doi.org/10.3390/cryst11070779
3. Asadi Shamsabadi E, Roshan N, Hadigheh SA, Nehdi ML, Khodabakhshian A, Ghalehnovi M (2022) Machine learning-based compressive strength modelling of concrete incorporating waste marble powder. Constr Build Mater 324:126592. https://doi.org/10.1016/j.conbuildmat.2022.126592
4. Asghari V, Leung YF, Hsu S-C (2020) Deep neural network based framework for complex correlations in engineering metrics. Adv Eng Inform 44:101058. https://doi.org/10.1016/j.aei.2020.101058
5. Aslam F et al (2022) Compressive strength prediction of rice husk ash using multiphysics genetic expression programming. Ain Shams Eng J 13:101593. https://doi.org/10.1016/j.asej.2021.09.020
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessing the compressive strength of eco-friendly concrete made with rice husk ash: A hybrid artificial intelligence-aided technique;Structures;2024-10
2. Extreme fine-tuning and explainable AI model for non-destructive prediction of concrete compressive strength, the case of ConcreteXAI dataset;Advances in Engineering Software;2024-06
3. Predicting Compressive Strength of High-Performance Concrete Using Hybridization of Nature-Inspired Metaheuristic and Gradient Boosting Machine;Mathematics;2024-04-22
4. A comparison of novel hybrid ensemble learners to predict the compressive strength of green engineering materials: a case of concrete composed of rice husk ash;European Journal of Environmental and Civil Engineering;2024-04-08
5. Comparative Analysis of Gradient-Boosting Ensembles for Estimation of Compressive Strength of Quaternary Blend Concrete;International Journal of Concrete Structures and Materials;2024-04-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3