Author:
Huang Guo-Bin,Guo Zhi-Yong,Ye Ting-Xiu,Zhang Chen,Zhou Yan-Mei,Yao Qiu-Hong,Chen Xi
Abstract
AbstractCubic phase CsPbBr3 perovskite nanocrystals (PNCs) was prepared by a high-temperature hot-injection method. The high photoluminescence quantum yield (PLQY) of as-prepared CsPbBr3 PNCs was 87%, which can be used for the determination of chloridion in domestic water samples based on their wavelength-shift characteristics via halide exchange. The proposal approach for the determination of chloridion reveals a linear correlation ranged from 10 to 200 μM of the chloridion concentration and the wavelength shift of CsPbBr3 PNCs with a correlation coefficient of R2 = 0.9956. The as-mentioned method reveals neglectable responses towards those co-existing ions in the water aside from chloridion, due to the quick exchange between Cl and Br and the outstanding color change caused by wavelength shift. The strategy has been applied to the determination of chloridion in water samples with the recoveries of 98.9–104.2% and the limit of detection (LOD) of 4 μM. These results show that the suggested approach is promising for the development of novel fluorescence detection for chloridion in water.
Funder
Marine and Fishery Department of Xiamen
the Training Program of the Outstanding Young Scientific Talents in Fujian
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Electrochemistry,Spectroscopy,Instrumentation,Environmental Chemistry,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献