Plasma-Induced Interfacial Processes in Metal Halides FTIR Gas Cell Windows

Author:

Olenik JakaORCID,Shvalya VasylORCID,Modic MartinaORCID,Ekar JernejORCID,Kovač JanezORCID,Cvelbar UrošORCID,Walsh James L.ORCID

Abstract

AbstractFourier transform infrared spectroscopy (FTIR) is one of the most widely used vibrational diagnostic techniques to investigate gas-phase reactive oxygen and nitrogen species (RONS). However, the technique carries intrinsic challenges, particularly in relation to interfering peaks in the spectral data. This study explores the interfacial processes that occur when reactive oxygen and nitrogen species generated by a non-equilibrium air plasma interact with the metal halide windows of an FTIR gas cell, leading to the appearance and evolution of spurious absorption peaks which complicate spectral interpretation. Raman spectroscopy, X-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry and attenuated total reflectance-FTIR spectroscopy were used to elucidate the origin of spurious absorption peaks spanning the 1400–1300 cm−1 spectral range as a result of KBr exposure to plasma generated species. It was found that plasma exposed KBr contained a lower atomic fraction of Br which was replaced by the NO3 nitrate group, the main absorbance peak of which progressively evolved with plasma exposure and affected the window transparency over the corresponding FTIR region. A correlation was revealed between KNO3 formation, plasma power and exposure time to a growth and change in molecular vibrational energies corresponding to asymmetric NO3 stretching vibrations in the KNO3 structure.

Funder

UK Engineering and Physical Sciences Research Council

Public Agency for Research Activity of the Republic of Slovenia

NATO

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,Spectroscopy,Instrumentation,Environmental Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3