Author:
Kooi Barteld,Tamminga Allard
Abstract
Abstract
Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we show that for every S5-model there is an equivalent three-valued valuation and vice versa. In general, our Translation Manual gives rise to translations that are exponentially longer than their originals. This fact raises the question whether there are three-valued logics for which there is a shorter translation into S5. The answer is affirmative: we present an elegant linear translation of the Logic of Paradox and of Strong Three-valued Logic into S5.
Publisher
Springer Science and Business Media LLC
Subject
History and Philosophy of Science,Logic
Reference16 articles.
1. Batens, D., On some remarkable relations between paraconsistent logics, modal logics, and ambiguity logics, in W. A. Carnielli, M. E. Coniglio, and I. M. L. D’Ottaviano (eds.), Paraconsistency. The Logical Way to the Inconsistent, Marcel Dekker, New York, 2002, pp. 275–293.
2. Brown B.: Yes, Virginia, there really are paraconsistent logics. Journal of Philosophical Logic 28, 489–500 (1999)
3. Bush, D., Sequent formalizations of three-valued logic, in P. Doherty (ed.), Partiality, Modality and Nonmonotonicity, CSLI Publications, Stanford, 1996, pp. 45–75.
4. Cadoli M., Schaerf M.: On the complexity of entailment in propositional multivalued logics. Annals of Mathematics and Artificial Intelligence 18, 29–50 (1996)
5. Chellas B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献