From Contact Relations to Modal Operators, and Back

Author:

Gruszczyński RafałORCID,Menchón Paula

Abstract

AbstractOne of the standard axioms for Boolean contact algebras says that if a regionxis in contact with the join ofyandz, thenxis in contact with at least one of the two regions. Our intention is to examine a stronger version of this axiom according to which ifxis in contact with the supremum of some familySof regions, then there is a yinSthat is in contact withx. We study a modal possibility operator which is definable in complete algebras in the presence of the aforementioned axiom, and we prove that the class of complete algebras satisfying the axiom is closely related to the class of modal KTB-algebras. We also demonstrate that in the class of complete extensional contact algebras the axiom is equivalent to the statement:every region is isolated. Finally, we present an interpretation of the modal operator in the class of the so-calledresolution contact algebras.

Funder

National Science Center

HORIZON EUROPE Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Logic

Reference24 articles.

1. Bezhanishvili, G., N. Bezhanishvili, S. Sourabh, and Y. Venema, Irreducible equivalence relations, Gleason spaces, and de Vries duality, Applied Categorical Structures 25:381–401, 2017.

2. Celani, S. A., Quasi-modal algebras, Mathematica Bohemica 126(4):721–736, 2001.

3. Celani, S. A., Simple and subdirectly irreducibles bounded distributive lattices with unary operators, International Journal of Mathematics and Mathematical Sciences 2006:1–20, 2006.

4. de Vries, H., Compact Spaces and Compactifications, Van Gorcum and Comp. N.V., 1962.

5. Dimov, G., and D. Vakarelov, Contact algebras and region-based theory of space: A proximity approach—I, Fundamenta Informaticae 74(2–3):209–249, 2006a.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grzegorczyk and Whitehead Points: The Story Continues;Journal of Philosophical Logic;2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3