Abstract
Abstract
Hamkins and Löwe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra H
of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.
Publisher
Springer Science and Business Media LLC
Subject
History and Philosophy of Science,Logic
Reference13 articles.
1. Adámek J., Rosický J., Vitale E. M.: Algebraic theories. A categorical introduction to general algebra, vol. 184 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2011)
2. Bezhanishvili G.: ‘The universal modality, the center of a Heyting algebra, and the Blok-Esakia theorem’. Annals of Pure and Applied Logic 161(3), 253–267 (2009)
3. Chagrov, A., and M. Zakharyaschev, Modal logic, vol. 35 of Oxford Logic Guides, Oxford University Press, 1997.
4. Dummett M., Lemmon E.: ‘Modal logics between S4 and S5’. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 3, 250–264 (1959)
5. Gödel K.: ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’. Dialectica 12, 280–287 (1958)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献