Paraconsistency in Non-Fregean Framework

Author:

Golińska-Pilarek JoannaORCID

Abstract

AbstractA non-Fregean framework aims to provide a formal tool for reasoning about semantic denotations of sentences and their interactions. Extending a logic to its non-Fregean version involves introducing a new connective $$\equiv $$ that allows to separate denotations of sentences from their logical values. Intuitively, $$\equiv $$ combines two sentences $$\varphi $$ φ and $$\psi $$ ψ into a true one whenever $$\varphi $$ φ and $$\psi $$ ψ have the same semantic correlates, describe the same situations, or have the same content or meaning. The paper aims to compare non-Fregean paraconsistent Grzegorczyk’s logics (Logic of Descriptions $$\textsf{LD}$$ LD , Logic of Descriptions with Suszko’s Axioms $$\textsf{LDS}$$ LDS , Logic of Equimeaning $$\textsf{LDE}$$ LDE ) with non-Fregean versions of certain well-known paraconsistent logics (Jaśkowski’s Discussive Logic $$\textsf{D}_2$$ D 2 , Logic of Paradox $$\textsf{LP}$$ LP , Logics of Formal Inconsistency $$\textsf{LFI}{1}$$ LFI 1 and $$\textsf{LFI}{2}$$ LFI 2 ). We prove that Grzegorczyk’s logics are either weaker than or incomparable to non-Fregean extensions of $$\textsf{LP}$$ LP , $$\textsf{LFI}{1}$$ LFI 1 , $$\textsf{LFI}{2}$$ LFI 2 . Furthermore, we show that non-Fregean extensions of $$\textsf{LP}$$ LP , $$\textsf{LFI}{1}$$ LFI 1 , $$\textsf{LFI}{2}$$ LFI 2 , and $$\textsf{D}_2$$ D 2 are more expressive than their original counterparts. Our results highlight that the non-Fregean connective $$\equiv $$ can serve as a tool for expressing various properties of the ontology underlying the logics under consideration.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Reference41 articles.

1. Anderson, A.R., and N.D. Belnap, Entailment: The Logic of Relevance and Necessity, vol. 1, Princeton University Press, 1975.

2. Anderson, A.R., N.D. Belnap, and J. Michael Dunn, Entailment: The Logic of Relevance and Necessity, vol. 2, Princeton University Press, 1992.

3. Asenjo, F.G., A calculus for antinomies, Notre Dame Journal of Formal Logic 16(1):103–105, 1966.

4. Béziau, J.-Y., W. Carnielli, and D. Gabbay, Handbook of Paraconsistency, King’s College, London, 2007.

5. Bloom, S.L., and R. Suszko, Semantics for the sentential calculus with identity, Studia Logica 28(1):77–81, 1971.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3