Categoricity Problem for LP and K3

Author:

Tabakci Selcuk KaanORCID

Abstract

AbstractEven though the strong relationship between proof-theoretic and model-theoretic notions in one’s logical theory can be shown by soundness and completeness proofs, whether we can define the model-theoretic notions by means of the inferences in a proof system is not at all trivial. For instance, provable inferences in a proof system of classical logic in the logical framework do not determine its intended models as shown by Carnap (Formalization of logic, Harvard University Press, Cambridge, 1943), i.e., there are non-Boolean models that satisfy its provable inferences. In the literature, this is known as the Categoricity problem or Carnap’s problem. In this paper, we will discuss the Categoricity problem (or Carnap’s problem) for three-valued logics K3 and LP. We will provide three different restrictions on admissible models that will deliver us categoricity results, some of which draw from the solutions provided for the Categoricity problem for classical logic in Belnap and Massey (Stud Log 49(1):67–82, 1990) and Bonnay and Westerståhl (Erkenntis 81(4):721–739, 2016). We will then argue that two of those solutions are philosophically well-motivated: (1) restricting the admissible models where negation is interpreted as a Strong Kleene truth-function, and (2) restricting the admissible models where a complex formula is assigned the third value when its immediate subformulas are assigned the third value.

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Avron, A., Natural 3-valued logics-characterization and proof theory, The Journal of Symbolic Logic 56(1):276–294, 1991.

2. Avron, A., The method of hypersequents in the proof theory of propositional non-classical logics, in W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, (eds.), Logic: From Foundation to Applications. European Logic Colloquium, Oxford University Press, 1996, pp. 1–32.

3. Avron, A., Classical Gentzen-type methods in propositional many-valued logics, in M. Fitting, and E. Orłowska, (eds.), Beyond Two: Theory and Applications of Multiple-Valued Logic, Springer, Berlin, 2003, pp. 117–155.

4. Avron, A., O. Arieli, and A. Zamansky, Theory of Effective Propositional Paraconsistent Logics, College Publications, New York, 2018.

5. Baaz, M., C. G. Fermülller, and R. Zach, Systematic construction of natural deduction systems for many-valued logics, in Proceedings of the 23rd International Symposium on Multiple-Valued Logics, 1993, pp. 208–213.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3