1. Mannan, A., Javed, K., & Noo, S. K. (2017). Maximum relevance maximum anti-redundancy (MRMA) feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 1–14.
2. Onal, A. C., Sezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017). Weather data analysis and sensor fault detection using an extended IoT framework with semantics. IEEE Transactions on Signal Processing Big Data and Machine Learning, 53(1), 2037–2046.
3. Bhargava, A., & Raghuvanshi, A. S. (2016). Anomaly fault detection in wireless sensor networks using S-transform in combination with SVM. IEEE Transactions on Wireless Communications, 34(9), 111–116.
4. Adil, B.-H., Youssef, G., & Abderrahim, E. Q. (2017). HVS-MRMR wrapper methods for feature selection. IEEE Transactions on Neural Networks and Learning Systems, 17(3–4), 4062–4069.
5. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., & Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost ensembling approaches. IEEE Open Access Journal, 6, 21020–21031.