An Optimized Deep Neural Aspect Based Framework for Sentiment Classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Link
https://link.springer.com/content/pdf/10.1007/s11277-022-10081-w.pdf
Reference41 articles.
1. Gandhi, U. D., Malarvizhi Kumar, P., Chandra Babu, G., & Karthick, G. (2021). Sentiment analysis on twitter data by using convolutional neural network (CNN) and long short term memory (LSTM). Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08580-3
2. Mahalakshmi, P., & Fatima, N. S. (2021). Ensembling of text and images using deep convolutional neural networks for intelligent information retrieval. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08211-x
3. BalaAnand, M., Karthikeyan, N., & Karthik, S. (2019). Envisioning social media information for big data using big vision schemes in wireless environment. Wireless Personal Communications, 109, 777–796. https://doi.org/10.1007/s11277-019-06590-w
4. Das, D. (2018). Positive and negative link prediction algorithm based on sentiment analysis in large social networks. Wireless Personal Communications, 102, 2183–2198. https://doi.org/10.1007/s11277-018-5499-6
5. Poria, S., Hazarika, D., Majumder, N., & Mihalcea, R. (2020). Beneath the tip of the iceberg: Current challenges and new directions in sentiment analysis research. IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2020.3038167
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development of optimized cascaded LSTM with Seq2seqNet and transformer net for aspect-based sentiment analysis framework;Web Intelligence;2024-05-15
2. Correction to: An Optimized Deep Neural Aspect Based Framework for Sentiment Classification;Wireless Personal Communications;2022-12-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3