Funder
Ministry of Human Resource Development
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Reference21 articles.
1. Chen, P. Y., Yang, S., & McCann, J. A. (2015). Distributed real-time anomaly detection in networked industrial sensing systems. IEEE Transactions on Industrial Electronics, 62(6), 3832–3842.
2. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.
3. Fall, K., Varadhan, K., et al. (2005). The ns manual (formerly ns notes and documentation). The VINT project, 47, 19–231.
4. Guesmi, H., Ben Salem, S., & Bacha, K. (2015). Smart wireless sensor networks for online faults diagnosis in induction machine. Computers & Electrical Engineering, 41, 226–239. https://doi.org/10.1016/j.compeleceng.2014.10.015.
5. Jan, S. U., Lee, Y. D., & Koo, I. S. (2021). A distributed sensor-fault detection and diagnosis framework using machine learning. Information Sciences, 547, 777–796. https://doi.org/10.1016/j.ins.2020.08.068.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献