Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Reference107 articles.
1. Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud computings. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.
2. Ashraf, A., Porres, I., Naeen, H. M., Zeinali, E., & Haghighat, A. T. (2018). A stochastic process-based server consolidation approach for dynamic workloads in cloud data centers. The Journal of Supercomputing, 76(3), 1903–1930.
3. Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., & Wan, J. (2019). Energy aware virtual machine scheduling in data centers. In Energies, MDPI.
4. Xie, L., Chen, S., Shen, W., & Miao, H. (2018). A novel self-adaptive vm consolidation strategy using dynamic multi-thresholds in IaaS Clouds. In Future Internet, MDPI (pp. 1–18).
5. Pahlavan, A., Momtazpour, M., & Goudarzi, M. (2014). Power reduction in HPC data centers: A joint server placement and chassis consolidation approach. The Journal of Supercomputing, 70, 845–879.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献