Adaptive Methods for Revenue Model Learning of a Slice Broker in the Presence of Adversaries

Author:

Khan Muhidul IslamORCID,Nencioni Gianfranco

Abstract

AbstractIn the fifth-generation (5G) of mobile networks, Multi-Access Edge Computing (MEC) refers to the deployment of computing resources closer to the end-users for improved service delivery. In the context of 5G MEC, the slice broker plays a crucial role in managing the allocation of resources among the different network slices, which are logical networks on top of a shared infrastructure. The slice broker is a business entity that acts as an intermediary between the slice tenants and the infrastructure provider and is responsible for allocating resources (such as CPU, memory, and network bandwidth) required to set up the network. The slice broker must ensure that resources are allocated in a way that the revenue is maximized. In a dynamic environment, the slice broker must learn the revenue model adaptively and online. Adversaries can significantly reduce the revenue by misleading the system about the resources pretending to be selfish nodes, or creating noise. The slice broker should learn the revenue model in the presence of adversaries. We apply cooperative deep reinforcement learning with consensus mechanism and consensus deep learning to learn the revenue model adaptively. We also compare our proposed methods with the reference solution. Simulation results show that our proposed methods, especially the cooperative version, outperform the reference solution.

Funder

Norges Forskningsråd

University of Stavanger & Stavanger University Hospital

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3