Author:
Iqbal Muhammad Ather,Wang Zhijie,Ali Zain Anwar,Riaz Shazia
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Computer Science Applications
Reference27 articles.
1. Fouad, M. M. M., Zawbaa, H. M., El-Bendary, N., & Hassanien, A. E. (2013). Automatic Nile tilapia fish classification approach using machine learning techniques. In 13th International conference on hybrid intelligent systems, HIS 2013, IEEE (pp. 173–178).
2. Fouad, M. M., Zawbaa, H. M., Gaber, T., Snasel, V., & Hassanien, A. E. (2016). A fish detection approach based on BAT algorithm. In The 1st international conference on advanced intelligent system and informatics, AISI 2015 (pp. 273–283). Cham: Springer.
3. Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y. H. J., Fisher, R. B., & Nadarajan, G., (2010). Automatic fish classification for underwater species behavior understanding. In Proceedings of the first ACM international workshop on analysis and retrieval of tracked events and motion in imagery streams (pp. 45–50). ACM.
4. Nagashima, Y., & Ishimatsu, T. (1998). A morphological approach to fish discrimination. In IAPR workshop on machine vision applications, Nov. 17–19 (pp. 306–309).
5. Storbeck, F., & Daan, B. (2001). Fish species recognition using computer vision and a neural network. Fisheries Research, 51(1), 11–15.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献