1. Jia, X., Kuo, B. C., & Crawford, M. M. (2013). Feature mining for hyper-spectral image classification. Proceedings of the IEEE, 101(3), 676–697.
2. Huo, L. G., & Feng, X. C. (2014). Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning. Journal of Electronics & Information Technology, 36(11), 2723–2729.
3. Cheng, S. X., Xie, C. Q., Wang, Q. N., et al. (2014). Different wavelengths selection methods for identification of early blight on tomato leaves by using hyperspectral imaging technique. Spectroscopy and Spectral Analysis, 34(5), 1362–1366.
4. Fan, L., Lv, J., & Deng, J. (2014). Classification of hyperspectral remote sensing images based on bands grouping and classification ensembles. Acta Optica Sinica, 34(9), 1–11.
5. Cheriyadat, A., & Bruce, L. (2003). Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. Proceeding of IEEE Geoscience and Remote Sensing Symposium (IGARSS), 104(2), 3420–3422.