1. Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., & Acharya, U. R. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76, 243–297.
2. Abraham, N., Khan, N.M., (2019). A novel focal tversky loss function with improved attention u-net for lesion segmentation. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, pp. 683–687.
3. Akselrod-Ballin, A., Karlinsky, L., Hazan, A., Bakalo, R., Horesh, A.B., Shoshan, Y., Barkan, E., et al., (2017). Deep learning for automatic detection of abnormal findings in breast mammography. In: Cardoso, M.J., (Eds.),
4. Arbel, T., Carneiro, G., Syeda-Mahmood, T., Tavares, J.M.R.S., Moradi, M., et al. (Eds.), Deep Learning in Medical Image Analysis and Multimodal Learning For Clinical Decision Support. Springer International Publishing, Cham, 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018 pp. 321–329.
5. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K., (2018). Recurrent residual convolutional neural network based on u-net (r2U-net) for medical image segmentation. arXiv preprint arXiv:1802.06955.