Exploring Beyond the DNA Sequence: A Review of Epigenomic Studies of DNA and Histone Modifications in Dementia

Author:

MacBean Lachlan F.,Smith Adam R.,Lunnon Katie

Abstract

Abstract Purpose of Review Although genome-scale studies have identified many genetic variants associated with dementia, these do not account for all of disease incidence and so recently attention has turned to studying mechanisms of genome regulation. Epigenetic processes such as modifications to the DNA and histones alter transcriptional activity and have been hypothesized to be involved in the etiology of dementia. Here, we review the growing body of literature on dementia epigenomics, with a focus on novel discoveries, current limitations, and future directions for the field. Recent Findings It is through advances in genomic technology that large-scale quantification of epigenetic modifications is now possible in dementia. Most of the literature in the field has primarily focussed on exploring DNA modifications, namely DNA methylation, in postmortem brain samples from individuals with Alzheimer’s disease. However, recent studies have now begun to explore other epigenetic marks, such as histone modifications, investigating these signatures in both the brain and blood, and in a range of other dementias. Summary There is still a demand for more epigenomic studies to be conducted in the dementia field, particularly those assessing chromatin dynamics and a broader range of histone modifications. The field faces limitations in sample accessibility with many studies lacking power. Furthermore, the frequent use of heterogeneous bulk tissue containing multiple cell types further hinders data interpretation. Looking to the future, multi-omic studies, integrating many different epigenetic marks, with matched genetic, transcriptomic, and proteomic data, will be vital, particularly when undertaken in isolated cell populations, or ideally at the level of the single cell. Ultimately these studies could identify novel dysfunctional pathways and biomarkers for disease, which could lead to new therapeutic avenues.

Funder

University of Exeter

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3