Abstract
Abstract
Purpose
Cardiac
tissue engineering opens up opportunities for regenerative therapy in heart diseases. Current technologies improve engineered cardiac tissue characteristics by combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with non-cardiomyocytes, selective biomaterials, and additional growth factors. Animal models are still required to determine cardiac patches’ overall in vivo effect before initiating human trials. Here, we review the current in vivo studies of cardiac patches using hiPSC-CMs.
Methods
We performed a literature search for studies on cardiac patch in vivo application and compared outcomes based on cell engraftment, functional changes, and safety profiles.
Results
Present studies confirm the beneficial results of combining hiPSC-CMs with other cardiac cell lineages and biomaterials. They improved the functional capacity of the heart, showed a reduction in infarct size, and initiated an adaptive inflammatory process through neovascularisation.
Conclusion
The cardiac patch is currently the most effective delivery system, proving safety and improvements in animal models, which are suggested to be the role of the paracrine mechanism. Further studies should focus on honing in vitro patch characteristics to achieve ideal results.
Lay Summary
Cardiac tissue engineering answers the demand for regenerative therapy in heart diseases. Combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with biomaterials and growth factors in cardiac patches improves the heart’s structural and functional characteristics. This delivery system is safe and efficient for delivering many cells and minimising cellular loss in vivo. Rat and porcine models of ischemic and non-ischemic heart diseases demonstrated the benefits of this therapy, which include cell engraftment, reduced infarct size, and increased left ventricular (LV) systolic function, with no reported critical adverse events. These reports sufficiently provide evidence of feasible improvements to proceed towards further trials.
Funder
Kementerian Riset dan Teknologi /Badan Riset dan Inovasi Nasional
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)
Reference74 articles.
1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics: 2021 update. Circulation. 2021;143:e254-743.
2. Lorts A, Conway J, Schweiger M, Adachi I, Amdani S, Auerbach SR, et al. ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. J Hear Lung Transplant. 2021;40:709–32.
3. Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106:62–9.
4. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.
5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.