Molecular Circuit Discovery for Mechanobiology of Cardiovascular Disease

Author:

Yu Xinren,Doyle AdeleORCID

Abstract

Abstract Purpose Cardiovascular diseases, the world’s leading cause of death, are linked to changes in tissue mechanical and material properties that affect the signaling of cells in the damaged tissue. It is hard to predict the effect of altered physical cues on cell signaling though, due to the large number of molecules potentially involved. Our goal is to identify genes and molecular networks that mediate cellular response to cardiovascular disease and cardiovascular-related forces. Methods We used custom computer code, statistics, and bioinformatics tools to meta-analyze PubMed-indexed citations for mentions of genes and proteins. Results We identified the names and frequencies of genes studied in the context of mechanical cues (shear, strain, stiffness, and pressure) and major diseases (stroke, myocardial infarction, peripheral arterial disease, deep vein thrombosis). Using statistical and bioinformatics analyses of these biomolecules, we identified the cellular functions and molecular gene sets linked to cardiovascular diseases, biophysical cues, and the overlap between these topics. These gene sets formed independent molecular circuits that each related to different biological processes, including inflammation and extracellular matrix remodeling. Conclusion Computational analysis of cardiovascular and mechanobiology publication data can be used for discovery of evidence-based, data-rich gene networks suitable for future systems biology modeling of mechanosignaling.

Funder

deutsche forschungsgemeinschaft (dfg) cluster of excellence ”physics of life of tu dresden”

university of california, santa barbara

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3