Maturating Articular Cartilage Can Induce Ectopic Joint-Like Structures in Neonatal Mice

Author:

Miura Shinichirou,Tsutsumi Rio,Agata Kiyokazu,Endo TetsuyaORCID

Abstract

Abstract Osteoarthritis is a huge health burden to our society. Seeking for potential ways to induce regeneration of articular cartilage (AC) that is intrinsically limited, we focused on the interaction between two opposing joints. To evaluate the role of the interaction of opposing regions of AC for joint maturation, we amputated digits at the distal interphalangeal level without injuring the articular surface of the intermediate phalanx (P2) and observed that the zonal organization of AC was defective. We then removed the P2 bone without injuring the articular surface of the proximal phalanx (P1), and the remaining part of the digit was amputated near the distal interphalangeal level. The distribution pattern of type II collagen and proteoglycan 4 (PRG4) suggested that maturation of AC in P1 was delayed. These two experiments suggested that an interaction between the opposing AC in a joint is necessary for maturation of the zonal organization of AC in neonatal digits. To test if an interaction of the joints is sufficient to induce articular cartilage, a proximal fragment of P2 was resected, inverted, and put back into the original location. Newly formed cartilage was induced at the interface region between the AC of the inverted graft and the cut edge of the distal part of P2. Type II collagen and PRG4 were expressed in the ectopic cartilage in a similar manner to normal AC, indicating that neonatal AC can induce ectopic joint-like structures in mice comparable with what has been reported in newts and frogs. These results suggest that the neonatal joint could be a source of inductive signals for regeneration of AC. Lay Summary In this study, we experimentally show that neonatal mice appear to have the capacity to regenerate articular cartilage (AC) in digits. It is already known that mice can regenerate a digit tip after amputation, but do not regenerate in response to amputations at more proximal levels. Therefore, it has been thought that mammalian joint structures are non-regenerative. However, we found that normal digit AC can induce AC-like structures in a non-joint region when it is placed next to the cut edge of a bone, suggesting that the normal AC has regenerative capacity in certain situations in neonatal mice. Future Works Joint disorders are a huge health problem of our society. The results of this study suggest that neonatal AC could be a potential source of inductive signals for regeneration of AC. The discovery of these inductive signals will aid in developing regenerative therapies of a joint in human.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3