Toward Bioactive Hydrogels: A Tunable Approach via Nucleic Acid-Collagen Complexation

Author:

Pipis NikolaosORCID,Duraivel Senthilkumar,Subramaniam VigneshORCID,Stewart Kevin A.,Angelini Thomas E.ORCID,Allen Josephine B.ORCID

Abstract

Abstract Purpose Nucleic acid-collagen complexes (NACCs) are unique biomaterials formed by binding short, monodisperse single-stranded DNA (ssDNA) with type I collagen. These complexes spontaneously generate microfibers and nanoparticles of varying sizes, offering a versatile platform with potential applications in tissue engineering and regenerative medicine. However, the detailed mechanisms behind the nucleic acid-driven assembly of collagen fibers still need to be established. We aim to understand the relationship between microscopic structure and bulk material properties and demonstrate that NACCs can be engineered as mechanically tunable systems. Methods We present a study to test NACCs with varying molar ratios of collagen to random ssDNA oligonucleotides. Our methods encompass the assessment of molecular interactions through infrared spectroscopy and the characterization of gelation and rheological behavior. We also include phase contrast, confocal reflectance, and transmission electron microscopy to provide complementary information on the 3D structural organization of the hydrogels. Results We report that adding DNA oligonucleotides within collagen robustly reinforces and rearranges the hydrogel network and accelerates gelation by triggering rapid fiber formation and spontaneous self-assembly. The elasticity of NACC hydrogels can be tailored according to the collagen-to-DNA molar ratio, ssDNA length, and collagen species. Conclusion Our findings hold significant implications for the design of mechanically tunable DNA-based hydrogel systems. The ability to manipulate hydrogel stiffness by tailoring DNA content and collagen concentration offers new avenues for fine tuning material properties, enhancing the versatility of bioactive hydrogels in diverse biomedical applications. Lay Summary This work is an example of forming fibers and gels with tunable elasticity that stems from the complexation of short-length nucleic acids (on the order of size of aptamers) and collagen, which can be potentially extended to a variety of functionalized hydrogel designs and tailored biomedical applications. Incorporating DNA induces mechanical changes in NACCs. Graphical Abstract

Funder

National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3