Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Boussinesq J. Theorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal en communiquant au liqude contene dans ce cannal des vitesses sensiblement pareilles de la surface au foud. J Math Pures Appl, 1872, 217: 55–108
2. Angulo J, Scialom M. Improved blow-up of solutions of a generalized Boussinesq equation. Comput Appl Math, 1999, 18: 333–341
3. Bona J L, Sachs R L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm Math Phys, 1988, 118: 15–29
4. Farah L G. Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Commun Part Diff Eq, 2009, 34: 52–73
5. Hu Q Y, Zhang H W, Liu G W. Global existence and exponential growth of solution for the logarithmic Boussinesq-type equation. J Math Anal Appl, 2016, 436: 990–1001