Genotype by environment interaction for physiological traits in sugar beet (Beta vulgaris L.) parents and hybrids using additive main effects and multiplicative interaction model

Author:

Abbasi ZahraORCID,Bocianowski JanORCID

Abstract

AbstractThe objective of this study was to assess genotype by environment interaction for 21 physiological traits in sugar beet (Beta vulgaris L.) parents and hybrids grown in Rodasht Agricultural Research Station in Iran by the additive main effects and multiplicative interaction model. The study comprised of 51 sugar beet genotypes [10 multigerm pollen parents, four monogerm seed parents and 36 F1 hybrids], evaluated at four environments in a randomized complete block design, with three replicates. The additive main effects and multiplicative interaction analyses revealed significant environment main effects with respect to all observed traits, except extraction coefficient of sugar. The additive main effects and multiplicative interaction stability values ranged from 0.009 (G17 for leaf Ca2+) to 9.698 (G09 for extraction coefficient of sugar). The parental forms 2 7233-P.29 (G38) and C CMS (G49) as well as hybrids 2(6)*C (G27) and 5*C (G33) are recommended for further inclusion in the breeding programs because of their stability and good average values of observed traits.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3